light pollution

Switch off streetlamps to fight light pollution

Paris is acknowledged to have installed the world’s first electric streetlights back in 1878. Three years later, 4,000 electric lamps were in use in the French capital and gas lanterns were gradually abandoned. Today, there are about 326 million streetlights all over the world, and this should grow to over 361 million by 2030. About a quarter of all streetlights globally have already been converted to LEDs and over 10 million have been connected to smart networks.

If we sum streetlights to lights beaming from homes, skyscrapers, shops, office buildings, and billboards, it is easy to understand our cities are over illuminated. Light pollution – which scientists define as the alteration of night natural lighting levels caused by anthropogenic sources of light – affects more than 80% of the world and more than 99% of the U.S. and European populations. The Milky Way is hidden for more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans.

Authoritative bodies such as the International Dark-Sky Association (IDA) are vocal in asking for urgent intervention to reduce the skyglow, the brightening of the night sky over inhabited areas. Many cities are discussing possible measures: in the US, the City of Pittsburgh presented a “Dark Sky Lighting” ordinance to introduce strict criteria for all newly constructed and renovated facilities and parks, and a mandate for all streetlights to utilize Dark Sky-compliant fixtures. The ordinance should be discussed later this month and might serve as a model for other municipalities looking to effectively reduce light pollution.

Light pollution has a remarkable financial and environmental impact. IDA estimates a third of all outdoor lighting in the US is wasted, costing facility owners some 3.3 billion USD annually and releasing 21 million tons of carbon emissions annually. But the widespread use of artificial light is also proven to interfere with people’s mental and physical health, as well as with wildlife and the natural habitats of plants.

The immediate solution we might think of – let’s turn out every light at night – is not such viable. Modern life requires lighting, specifically night street lighting is essential to make road mobility secure and improve public safety. In 2018, the New York City Crime Lab investigated some 80 public housing developments for a period of six months, measuring the effects of the introduction of new streetlights in around half of them. The study found that index crimes decreased by 7%, while night crimes dropped about 39%.

So, the real challenge is to responsibly and intelligently manage outdoor lighting to reduce pollution without jeopardizing quality of service. As reported by BBC, Tucson, Arizona, converted nearly 20,000 sodium street lights to dimmable, energy efficient LED lamps. Light pollution due to streetlights reduced from 18% to 13%. Since 2018 the city has cut its total light emissions by 7% and its annual energy bills by 2 million USD. Additional measures are being implemented to switch off advertising billboards, floodlights, buildings, and sports stadiums.

PE Smart Urban Network is our performing and reliable IoT platform for Smart Lighting: it allows to connect and control districts, streets, and even single lamps from a central management system, turning lights on/off and dimming them according to programmed schedules, environmental conditions or on demand.

Thanks to PE Smart Urban Network, cities can mitigate light pollution and save up to 80% of power and greenhouse emissions: learn more about our solution and join our community to access white papers, brochures, videos, and other insightful resources.


commuters

Will post-pandemic commuters be stuck again in traffic jams?

It’s a hard time for mobility experts who are asked to predict the impact of post-Covid working habits on commuters and urban traffic. We know the pandemic is not over, and lots of organizations are offering hybrid models with teleworking options to their employees - but the 'return to office' call is equally strong. Most analysts agree there will be a gradual increase in commuters over the coming months, rather than a sudden rush back to the office, but the spread of virus variants might blur the picture overnight.

In some cities, the reduced traffic congestion due to Covid-19 lockdowns and the massive teleworking seems to be encouraging more people to drive to the office. In the US, INRIX compared driving times to downtown Seattle at 8:30am, during morning rush hour: in 2019, before Covid, about 500 thousand workers were within a thirty-minute drive from home, while in 2020, during Covid, more than 800 thousand people were within a thirty-minute drive. This means the lack of congestion gave 58% more people the opportunity to travel downtown in half an hour, thus being more willing to make the drive as they don’t fear traffic.

The possibility that more commuters are driving is proved by parking trends. In several large cities with major mass-transit systems, including New York and San Francisco, parking usage rates are resuming quite quickly after collapsing in 2020. As reported by The Washington Post, in San Francisco parking facilities are at 85 to 90 percent of their pre-pandemic levels, compared with a 74 percent average comeback in other North American cities.

However, mobility experts acknowledge urban people are increasingly interested in alternative commuting systems – and those who commute less often are more likely to ride a bicycle or walk, provided their home-office journey is not too long.

The City of Boston investigated mobility habits of 2,650+ workers and calculated drive-alone commuting rates have dropped 10 percentage points in the last 12 months. About 6.5% of respondents questioned in 2021 said they use to bike to work, while about 9.5% said they plan to bike to work in the future. A similar survey in 2020 had lower results, as 4.4% said they used to bike to work and 8% said they planned to in the future. Building on these findings, the City is improving the existing bike infrastructure and 4.5 new miles of separated bike lanes will be added by the end of this year to the current network.

Changes are under way and it’s not clear whether commuters will be back to their habits of early 2020 or enjoy a new routine — and cities needs to closely monitor the evolution to take wise decisions about mobility and traffic management. But the common feeling is, some adjustments to pre-pandemic commuting patterns might be everlasting.


curb management

Curb management needs data

You might assume curbs are about pedestrians walks, but city managers think of these spaces as an interesting source of parking revenues. Curb management is normally based on cities’ fixed assets, with street signs displaying applicable rules: vehicle parking can have variable prices according to districts, days of the week or time slots; there might be reserved spaces for residents, disabled or electric cars.

However, curbs are nowadays seeing a convergence of different competing uses. From an increase in pick-ups and drop-offs to new ways to get around like shared bikes and scooters, curb management is becoming increasingly important for urban mobility – and cities are looking for new ways to organize and monetize their curb space.

Curb policies are mostly decided on a case-by-case basis without any data-driven support. This might result in a street block having metered parking all day and no loading zones for morning deliveries, no stopping restrictions during rush hours or specific options for commercial operators. Many drivers can either park illegally or circle the block multiple times while waiting for a spot (and we know that up to 56% of city traffic is due to idle cruising for parking). Where curbs allow different use cases, sometimes unclear signage causes some driver confusion as to which rule applies where, creating an inefficient parking and ticketing system.

Several innovative cities in the US and Europe recognized curbs are vital community spaces and one of the most extensive and valuable urban assets. Active and data-driven curb management enables communities to offer more equitable access among different users, improve level of service for everyone, collect data on transportation behaviors, draw more customers for local businesses, and create a sustainable revenue source.

In South California, US, the City of Stanford is executing a curb management plan to map all available spaces, their locations and current use. This preliminary survey will assist the City Council in enhancing street-level parking management, relieving spaces to improve alternative transportation options and identifying possible multiuser curbs space options. This project is scheduled to be completed within the year.

Again in the US, the San Francisco Municipal Transportation Agency (SFMTA) is leveraging curb management to address some immediate safety issues along 6th and Taylor streets, which are among the streets accounting for 75% of severe traffic injuries and fatalities in San Francisco. The communities that live along these corridors largely consist of seniors, children, people with disabilities, limited English proficient people and lower-income families. Together with some travel lane reconfigurations and signal changes, SFMTA believes better curb management can significantly contribute to pedestrians’ safety.

In Italy, the City of Turin is piloting a curb management project leveraging an analytics software. Data captured by cameras overlooking street parking and road traffic are analyzed and correlated with information generated by flows of public buses, delivery trucks, ride-sharing vehicles, scooters, bikes, and pedestrians. This should allow a comprehensive view of all mobility needs in the trial districts, supporting data-driven decision making.

With widespread, reliable datasets, the opportunities for smart curb management are vast. Cities can improve urban mobility and mitigate congestion thanks to a streamlined management of available street-level parking, price parking more equitably, better manage micromobility and commercial vehicle transit – with tangible benefits for their communities and the environment they live in.


hotel waste

The Summer challenge of hotel waste management

When the Summer season is in its peak, the increased number of people in tourism areas can make waste management operations definitely challenging. Some studies proved a tourist may generate up to twice as much waste as a local resident: in highly popular towns and locations, this can negatively impact the existing waste collection system, resulting in higher operational costs for a lower quality of service, and a backlash in terms of sustainability and environmental commitment.

Hotels generate large amounts of mixed solid waste, as it is more difficult for guests to correctly separate their trash – also because many hosts lack in adequate instructions and bins. Back in 2018, a team of researchers from Rostock University, Germany, investigated hotel waste generation in Tunisia, specifically in Hammamet and Gammarth, and discovered that 83% of accommodation facilities collected mixed waste, which was sent to landfills. About 58% of hotel waste was organic, while at least 36% was made of recyclable materials that could have been valorised if proper sorting had been performed onsite to separate glass, metal, plastic, and paper.

In Tunisia, solid waste management is mainly the responsibility of municipalities. During the Summer season, most cities struggle to keep the pace with the increased quantity of trash to be treated, so many of them delegate hostel waste collection to private operators, achieving a superior quality of service at lower costs.

The above-mentioned study compared taxes paid by hotels for general services, including trash management, to waste collection costs. Despite private operators are more convenient than public organizations, results clearly marked that hotel taxes do not cover the municipalities’ waste-related expenses.

Some interesting lessons can be learnt from this case. Reducing waste generation and promoting circular economy models is a multi-faceted matter, that requires a clear strategy, an efficient infrastructure, and a widespread educational effort.

Waste management should not merely be considered an expenditure item, but an opportunity to improve quality of life and tourism attractiveness by making cities cleaner, healthier, and safer. Some municipalities are starting this change by investing in educational programs and initiatives, but also putting pressure on hotels, businesses, and households by charging fees on residual waste collected. This should encourage a more accurate trash separation and recycling.

Smart technologies can help: our Smart Waste solution allows cities and operators managers to enhance solid waste collection by monitoring bin filling and optimizing waste trucks itineraries, taking data-driven decisions about resource allocation and dispatching. Moreover, thanks to Machine Learning techniques, we are evolving our system from a raw data collection platform to an actionable prediction solution, providing an estimate of the date when the bin will reach its capacity limit.

 

Download our paper ‘Smart waste, an opportunity cities should not trash’: join our digital community to benefit from insightful resourcing about smart IoT applications for Open Cities!


survivorship bias

Cybersecurity in Smart Cities: don’t be trapped in the survivorship bias

During World War II, a team of researchers at the Columbia University was asked to examine the damage done to aircraft that had returned from missions and recommended adding armor to the areas that showed the most damage. This sounded pretty logical, but the statistician Abraham Wald contradicted the US military's conclusions by pointing out that only the aircraft that had survived had been considered. Since the bullet holes in the returning aircraft identify areas where a bomber could take damage and still fly well enough to come back safely to base, Wald proposed to reinforce areas where the returning aircraft were unscathed.

The ‘survivorship bias’ – thus the logical error of concentrating on people or things that passed some selection process and overlooking those that did not – can lead to some false conclusions in several different ways, and it is a pitfall for cybersecurity too.

In 2020 the Center for Long-Term Cybersecurity at UC Berkeley surveyed 76 cybersecurity experts and ranked different technologies according to underlying technical vulnerabilities, their attractiveness to potential attackers, and the potential impact of a successful serious cyberattack. According to this study, not all Smart City technologies pose equal risks: emergency alerts, street video surveillance, and smart traffic signals stand out as the most vulnerable, while smart waste systems and satellite water leak detection are meant among the safest.

City officials should therefore consider whether cyber-risks outweigh the potential gains of technology adoption on a case-by-case basis, and invest more on technologies are both vulnerable in technical terms and constitute attractive targets to capable potential attackers because the impacts of an attack are likely to be great. Again, this sounds like a logical recommendation – but let us beware the survivorship bias.

Achieving 100% cybersecurity is an impossible goal unless we fully give up on innovation and digital transformation. However, Cities should be 100% conscious that any urban network infrastructure and application should be properly designed and implemented with security built in from the outset. Even potentially unattractive systems – such as streetlights – might become interesting for criminals, and the human element is often the weak link to turn a vulnerability into an actual leak.

Many governments around the world are raising cybersecurity consciousness and starting dedicated programs to protect critical systems and resources. Last May, President Joe Biden signed an executive order aimed at strengthening US cybersecurity defenses, a move that follows a series of sweeping cyberattacks on private companies and federal government networks over the past year. The order seeks to move the federal government toward more modern and safer digital infrastructure, and sets stricter rules for IT service providers working with public bodies.

Italy is set to create a national agency responsible for fighting cyberattacks and creating a unified cloud infrastructure to increase security for public administration data storage. Most European countries are boosting their efforts to counter cyber risks, seen as a threat to their security and competitiveness in an increasingly networked world.

While we head for improved systems and data protection, we shouldn’t forget that it is possible to balance the value of innovative technology with the lowest possible risks. At Paradox Engineering, the balance is made thanks to our ‘security by design’ approach: this means injecting cybersecurity into IoT technologies from their very inception, and combine different methods (blockchain, dedicated hardware security modules on devices, ultra-reliable encryption, and other features) to ensure urban infrastructures are intrinsically secure.

Securing cities is an ongoing challenge which requires an overarching approach and strategy (let us avoid the survivorship bias!), together with constant monitoring, learning and collaboration, especially as hackers tap advanced technologies such as AI to become more effective and cybersecurity insurance costs soar.